If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+12t+8=0
a = -16; b = 12; c = +8;
Δ = b2-4ac
Δ = 122-4·(-16)·8
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{41}}{2*-16}=\frac{-12-4\sqrt{41}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{41}}{2*-16}=\frac{-12+4\sqrt{41}}{-32} $
| x-9.8=1.43 | | X/2+11=6+2x/3 | | -7b+30=-10b | | 5a+14=2a-9 | | 8u+4=64 | | 4q-8=32 | | 2e+2=8 | | 6(x)+42+18(x)-12=180 | | (x+37)+(2x+8)=90 | | 2+18(x)-12=180 | | 3a=130 | | c=3.14(10) | | (x+37)+(2x-8)=90 | | 7x+16=-2(x+4)-3x | | (x+2)x2=8 | | 2+18x-12=180 | | 4(2x-5)+8x=15 | | 3x+20=4x-30 | | 2x^2+7x-15=-3 | | 45x+105=780 | | (x-20)x=180 | | 7^3x+12=50 | | 6x+4+6x+4=4x+16 | | 7(p+9)=-29 | | 3(x+4)=5x-(x-27) | | −4(1.5x−.5)=−15 | | 4x+22=2x-46 | | m=20+9 | | 3x-18=38 | | 4/3x+2=22 | | p^2−22=3 | | 42*x=x*42=42 |